THE SECURITY MODEL OF THE WEB

Philippe De Ryck

SecAppDev 2018

@PhilippeDeRyck

HE CONCEPT OF AN ORIGIN

@://Www.example.com:@/te_st?color=blue#section2
l l Ll I

scheme host port path query fragment

@PhilippeDeRyck

SAME-ORIGIN PoLicy (SOP)

Content retrieved from one origin can freely interact with other content from
that origin, but interactions with content from other origins are restricted

N ——"

http://example.com

http://example.com

\\

N

N~
) http://example.com |

Vs

— 1

http://forum.example.com

http://private.example.com

N A

_Iév

) http://private.example.com

@PhilippeDeRyck

ORIGIN-PROTECTED RESOURCES

= Modern browsers offer plenty of origin-protected resources
— The DOM and all its contents

— Client-side storage facilities
* Web storage, In-browser file systems, Indexed DB

— Permissions to various ”“invasive” features
* Geolocation, full-screen capabilities, media capture, ...

— WebRTC video and audio streams
— Ability to load and inspect resources from same-origin servers
— Ability to send XHR requests without restrictions

= You want to be in control of what happens in your origin

@PhilippeDeRyck

WHY IS THIS SO IMPORTANT?

= Understanding the basic security model of the web
— More and more software is moving towards the web
— Modern features strongly depend on the Same-Origin Policy

= Web security is an important aspect of SecAppDev
— Many of the attacks covered this weak abuse the SOP
— Countermeasures depend on the SOP for their security

= Most security problems are caused by a lack of knowledge
— If developers are not aware of security problems, they can’t fix them

@PhilippeDeRyck

ABOUT ME — PHILIPPE DE RYCK

= My goal is to help you build secure web applications
— Hosted and customized in-house training
— Specialized security assessments of modern web applications
— Threat landscape analysis and prioritization of security efforts

= Specialized in security for Angular applications
— The security impact of moving to a new paradigm
— Best practices and guidelines

= Course curator and co-organizer of the SecAppDev course
— Security course targeted towards developers, architects, ...
— Week-long course taught by international experts in their domain

secappdev.org

@PhilippeDeRyck

BROWSING CONTEXTS

@PhilippeDeRyck

WHAT IS A BROWSING CONTEXT?

0 0 £ SecaccOer - Secapeder 20 % Groen

¢ C 8 Secure MIps | 'www.secappdev.ong

SecAppDev 2018

February 19th - 23rd, Leuven, Belgium

Join the SecAppDev Community in 2018

@PhilippeDeRyck 8

WHAT IS A BROWSING CONTEXT?

0 0 & SecaceOer - Secapsder 20

¢ C 8 Secure MIps | 'www.secappdev.ong

= S0CUre
SR Acclicabion

SECAPPDEV 2018 Secure Application

February 19th - 23rd, Leuven, Be Development

Enchanting Venue

Join the SecAppDev Community in & | '

@PhilippeDeRyck

NESTED BROWSING CONTEXTS

‘ '& v aeCapeeiey vy c ﬁ 0 ‘ . ° !

@ Schedulo A ':v:<'.ﬁ.|:'<. Antended

oy 19

Deovelopers are nat the anemvy (opening keynote)
Myrhew Sevah

Low-level security widrarabilities The web's security model

@PhilippeDeRyck 10

HE SOP ISOLATES BROWSING CONTEXTS

(' L W REameie . com 40

Frame Demo

ML Pwern Sxarrgie Oom 4000

http
www.example.com
4000

=

B & hs & CS8 J5
et 0 v fraoe)
- .'w"'"#"",:dl

¢ Q B 4 & O

http
www.example.com
4000

http
private.example.com
4000

.‘.—l:‘—- i\ v] —-: l’
® Security Logone 0 Server
CONTANATH LAY . OO0 DOy Are NI » e D AN

@PhilippeDeRyck

11

\WHAT ABOUT THIS?

” . New T x +

« http://www.stroopwafels.com e Qs 0D ¢ AD

Would you like some Stroopwafels delivered to your home?

\EEWRGERLS Hell yeah!

@PhilippeDeRyck

Ul REDRESSING ATTACKS MISLEAD THE USER

= e New Tad

http://www.stroopwafels.com e | Q % wiB $an O

@PhilippeDeRyck

CLICKJACKING IS ANOTHER Ul REDRESSING ATTACK

” . New T x +

« http://www.stroopwafels.com e Qs 0D ¢ AD

Would you like some Stroopwafels delivered to your home?

\EEWRGERLS Hell yeah!

@PhilippeDeRyck

SENDING CLICKS TO A TRANSPARENT FRAME

http://www.stroopwafels.com e
tE84a0 =

WOU\‘a\YO&Lm‘(\e some Stroopwafels delivered to your home?

@PhilippeDeRyck

PREVENTING Ul REDRESSING ATTACKS

" Framing is the enabler for Ul redressing attacks
— JavaScript-based framebusting is not very effective
— Best practice is to strictly whitelist origins that are allowed to frame you

= X-Frame-Options header is the oldest mechanism
— Supports SAMEORIGIN, DENY Or ALLOW-FROM with an origin
- ALLOW-FROM not supported by all browsers, so combine with £rame-ancestors

= Content Security Policy has a frame-ancestors directive
— Supports ‘self’, ‘none’ or a list of allowed origins
— Not supported by all browsers, so combine with X-Frame-Options

@PhilippeDeRyck

PREVENTING Ul REDRESSING ATTACKS

X-Frame-Options: DENY

X-Frame-Options: ALLOW-FROM http://www.example.com

Content-Security-Policy: frame-ancestors http://www.example.com

Content-Security-Policy: frame-ancestors ‘none’

@PhilippeDeRyck

BROWSER SUPPORT — X-FRAME-OPTIONS

X-Frame-Options HTTP header »

ey i

Global I080W + BA04% » SCESY

An HTTP header which ingicates whether the browser should afow

the webpage 10 be displayed in a frame within another webpage

Used as a defense against diddgacking attacks

rS——

i = . . ¢« COvore o C Browser for Sorzun
e Edge Firefon Satari 05 Satan Opera Mind Aadrokl - Arideold it

@PhilippeDeRyck

BROWSER SUPPORT — CONTENT SECURITY PoLIcy

Content Security Policy Level 2 & < | Nean

Mitigate Cross-site SCripting attacks by whinelisting afowed sources
of script, style, and other resources. CSP 2 adds hash-source,
noNCcesource, and five new drecives

- e e
("' - — .._._._‘1

Beatorram aa 2

Chrome for UC Browser for SarsLng

g - ’) : . l -
£ tage Hredon Chrome Safar 05 Safan Opera Mini Andireed A ot It ame:

@PhilippeDeRyck

USING THE OPENER FOR TABNABBING

C)rvsrrttey o

. - o - “ PEND Lo W A o O -
O — Baptoen Ot Dy e Whees ++ O O P
maoinarg / tabrmabDing-cemo Pwmns ' Wt ¢+ Y
) ' ’ ’ < Code
u v s « tabnabbiog-demo / « '

MR ADWE o

5
This s 3 very Morseting pocssct
v
This is D deacrotion of e proect .
N

Lorem o ioem e .o

Q

‘ F o Deanroy

Lcaras WY v Dowediad 1w

@PhilippeDeRyck

CUTTING OPENED WINDOWS LOOSE

" [n most cases, there does not need to be a link back to the opener
— The rel attribute on anchor tags can be set to noopener
— The opener will be null, thereby preventing potential abuse

= Browser support is limited, so other options are available
— A workaround via JavaScript, explicitly setting the opener to null before loading a page
— The noreferrer option achieves something similar in older browsers

.

@PhilippeDeRyck

BROWSER SUPPORT FOR REL=“NOOPENER”

rel=noopener m i« e Sae
Glotal Ealse
Ensure new browsing contexts are opened without a useful
window . cpener
\"(‘. :. i- 3
. : . * C(hromefor UC Browser for SoTENg
3 tdpe refox Chrome Sa*ari 05 Satar Cpera Mirs Adireid A Okt terme:

@PhilippeDeRyck

RESTRICTING FRAMED CONTENT

= With the default security policies, framed content has a lot of freedom
— All permissions a normal web page has
— Possibility to navigate the top level browsing context
— Possibility to enable full-screen mode
— Possibility to load video or objects (Flash, Java)

" [n some scenarios, you want a frame to be more restrictive
— HTMLS introduced the sandbox attribute for this purpose
— Imposes a set of restrictions on the frame, before loading the content

<iframe src="“..” sandbox>.</iframe>

@PhilippeDeRyck

HE SANDBOX IS RESTRICTED BY DEFAULT

= Default set of restrictions that are applied
— Separate, unique origin
— No script execution
— No form submission
— No external navigations or popups
— No plugin content
— No fullscreen
— No autoplay

<iframe src="“..” sandbox>.</iframe>

@PhilippeDeRyck

RELAXING THE SANDBOX

= Restrictions can be lifted by adding specific keywords
— E.g. allow-scripts, allow-same-origin, ...

= Some restrictions cannot be lifted

— Plugin content cannot be re-enabled
— Navigating arbitrary contexts is not allowed (only top-level or auxiliary)

= Enabling allow-scripts together with allow-same-origin is dangerous
— Allows the sandboxed script to break out of the sandbox

<iframe src=“..” sandbox=“allow-scripts”>.</iframe>

@PhilippeDeRyck

ALL BROWSERS PROVIDE A SANDBOXED IFRAME

sandbox attribute for iframes m s " s &
Globo! G5 » D00 = X6

Method of running excernal site pages with reduced privileges (e

no JavasScript) in iframes

[J VLNT I -y

-

o | o o'l * Ovomefor UC Browser for Samsung
£ Edgpe Firotox Crrome Safari 05 Safari Opera Vs Arvirond AN ot Internet

http://caniuse.com/#search=sandbox

@PhilippeDeRyck

COMBINING SANDBOX WITH SRCDOC

= Sandboxing is really powerful when combined with srcdoc
— Lightweight mechanism to load content in an isolated environment
— Directly specify the HTML in the attribute, without requiring a page load first
— Use the sandbox attribute to leverage the SOP and apply additional restrictions

= The src attribute can be used as a fallback mechanism
— Supporting browsers will use sredoc and ignhore sxc
— Older browsers ignore srcdoc and use src

<iframe src=“..” srcdoc="<p>.</p>" sandbox>.</iframe>

@PhilippeDeRyck

COMMUNICATION BETWEEN BROWSING CONTEXTS

= Until HTMLS5, there was no designed communication channel
— Hacky workarounds leveraged the URI fragment to send messages
— Today, we have the Web Messaging API

frame.contentWindow.postMessage (“Moar Wafels”, “http://www.example.com”) ;

window.addEventListener (“message”, function(e) {
if (e.origin === “http://wafels.example.com”) {
console.log(”Incoming message: “ + e.data);

}

@PhilippeDeRyck

COMMUNICATING WITH A SANDBOXED CONTEXT

= A sandboxed content has a unique origin
— This is canonicalized as null, which is not a valid origin
— For Web Messaging, this means using the wildard *

frame.contentWindow.postMessage ("Moar Wafels”, “*”);

window.addEventListener (“message”, function(e) {
if (e.origin === “http://wafels.example.com”) {
console.log(”Incoming message: “ + e.data);

}

@PhilippeDeRyck

SCRIPT CONTEXTS

@PhilippeDeRyck

SCRIPTS CAN COME FROM ANYWHERE

: Angular @'
R
Ads
_

G
User Data
-

@PhilippeDeRyck

SCRIPT CONTEXTS AND BROWSING CONTEXTS

= Unlike documents, scripts are not loaded in a separate context
— Each browsing context only has one script context
— All scripts in the document run within this one context
— The browsing context has one shared scope and namespace

= The lack of code isolation has resulted in a few serious security problems
— User injected script runs within the document’s context (Cross-Site Scripting)
— Including an external library requires full trust in the third-party provider
— It is common practice to embed third-party components without any isolation

@PhilippeDeRyck

CROSS-SITE SCRIPTING (XSS)

" [n an XSS attack, malicious content is injected into your application’s pages
— In the “original” XSS attacks, an attacker injected JavaScript code
— Today, injected content can be JavaScript, CSS, HTML, SVG, ...

START SEARCH Szl Tt

The search functionality for this site is powered by

Google. Enter your search query in the form below
to search within this site.

Your search for "Crazy cats" returned 5 results

Crazy cats<script>alert("Miauw!")</script>

@PhilippeDeRyck

33

HE TRUE POWER BEHIND XSS

o SekF Cortnl Penel

€& & wnnxs

Hodmed Browsens
@ _) Orine Brrausen
e jit 0B

RS w0 Podule Tree Pcahabe Ersadls indewy
1 O .
s PRET ———T o foacs P Fab 0T 3643 14 21 % OIT.OL00 o auw
i e
*:‘:‘”‘“" y IINLILTI1STT comment 1 8 ~o8ull= S BB 4Ll Ay 3036 Teh SR (LY
, L4719 commene D e o,
w Unhock 3 s Fob OF 2043 1523 4T M 100 1 oswvn “Lortey
LR S Tow
S — UG8 HaBe bt PIREET M e ST AT BCT #4

-
© Detect Popus Socker
@ vt Tradoy
@ Detect Uraats ActieX OMfa I e~ AACTAZ NGALAGAAAGALAAD
r [S——— CwEAALBACEBLCEDACERALEDACESADIBACEBADEY
A AT IR O AMMIACE DETE D
@ Gof Visles L=0e IAGAAADDGEDAGE BAGAALALALAALALS OAUGD W
") Cnrame Bxcensces (T) N AL nEBAGIALEBAGALLAAAALE (o w sl By
PR T19tes BT pANS wEAANDE OA
) Duteg JAPT A S AL G AOAR L A AR AL phad kA C A
Jlxpts (14) ORI
SN 0% W fet OF 2003 1522 43 Gt 400 (L e
L s

e

| Wetaacict (225 Ot nTuieaSyeraCial Rpasagass(atasl
~ TALAAIDACEDASE DA DAL BACCD A DBACLDAKY
11eme 1 VA P00 O AMBEOALE OF 1 o

et (B
Al v BACTRATAACALLALAAAT (A wF B O
—J Pecantecce (€) IT19ut6e W pAMAwE AANEDE A
|Phenegen (T APT <A COADNUAL BANAKALPAEANA LOABAKA LOAGAN S
) Sacet Engraereg ¥ ok o

S + Fot S 1S %0 00 (Lesien Sanga't v

Bo exeose cormand .

LNETS Veaes
—
—eEF

THE BROWSER EXPLOITATION FRAMEWORK PROJECT

http://colesec.inventedtheinternet.com/beef-the-browser-exploitation-framework-project/

@PhilippeDeRyck

YOU ARE WHAT YOU INCLUDE ...

“88.45% of the Alexa top 10,000
web sites included at least one

remote JavaScript library”

https://seclab.cs.ucsb.edu/media/uploads/papers/jsinclusions.pdf

@PhilippeDeRyck

YOU ARE WHAT YOU INCLUDE ...

25

20

15

0 I'lll... ,
15 35

95 75 95 115 135 155 180 225 265 285
- 25 45 65 85 105 125 145 170 215 255 275 295

4% of Alexa sites

&4

#Remote hosts providing JS files

@PhilippeDeRyck

Google Analytics

Anywhere. Anytime.
Everywhere

4 Coinhive

A Crypto Miner
for your Website

Monetize Your Business With Your Users' CPU Power

@PhilippeDeRyck 38

WHEN YOU LOAD A SCRIPT, ALL YOU HAVE IS A NAME ...

@PhilippeDeRyck

https://some-cdn.com/angular/2.0.0.3s

AL

A
2,

2\

Massive denial-of-service attack on
GitHub tied to Chinese government

Reports: Millions of innocent Internet users conscripted into Chinese DDoS army.

Now researchers have unearthed additional evidence implicating China that goes beyond motive.
Specifically, the computers hammering GitHub servers are all running a piece of malicious code
that surreptitiously makes them soldiers in a massive DDoS army. The JavaScript gets silently
injected into the traffic of sites that use an analytics service that China-based search engine Baidu
makes available so website operators can track visitor statistics. About one percent of people
visiting such sites don't receive the true Baidu analytics JavaScript but instead get code that forces
their browser to constantly reload the two targeted GitHub pages.

@PhilippeDeRyck

KNOW WHAT YOU LOAD WITH SUBRESOURCE INTEGRITY

<script src=“https://..2.0.0.3s” https://../2.0.0.3s
integrity="sha384-814a3.Yzi="> | =———

</Script> g m g
— =

A

® Failed to find a valid digest in the 'integrity' attribute for resource sri.html:1
'https://cdnjs.cloudflare.com/ajax/libs/anqular.js/2.0.0-beta.17/anqular2.js' with l

computed SHA-256 integrity 'pQ+zWKiHP9lilLkd/wohYUH/XvvabBTRK19UjoIPFh5U="'. The
resource has been blocked.

@PhilippeDeRyck

DATA LEAKAGE THROUGH SR

<script src=“https://../api/accountbalance.js”
integrity="sha256-..="
crossorigin=“use-credentials”></script>

{“balance”: 1234.00} dPdFnnWdXY6eHXiK+30/0Si30eLFH1Lch1gZ3igD3MGNXck+0z4LETv81lnsoNyFI

® Failed to find a valid digest in the 'integrity' attribute for resource

{“balance”: 1235.00} RasWnvVTFAiT+6NeqIJFRDDDSk1MaljVOFxUQysJqUB65TGm/1FqKJkrGif2wzY

® Failed to find a valid digest in the 'integrity' attribute for resource

{“*balance”: 1236.00} uSCKmlyloPZ7VexjyLQ+sUvakZKycl3CsblGH/9XpGV09ymy£f1lnKAzUS5tXTFH50i1

® Failed to find a valid digest in the 'integrity' attribute for resource

{“*balance”: 1237.00} 4S12gcfIFhX2NRE5KPbeXR87PaiCSAan6PL2mxKWndBp8wvE2Dfcn7HenpNXD0oJ

@PhilippeDeRyck

ON THE WEB, IT’S NEVER THAT SIMPLE ...

= SRI allows an attacker to determine the existence of a predetermined file
— If no error is generated, the checksum matches and the file exists

= To avoid this privacy leak on legacy servers, CORS must be used

— The server needs to opt-in to use SRI by sending a CORS response header
— Can either be anonymous (no cookies) or authenticated (with cookies)

<Script Src=“...” ﬁ
integrity=“sha384-814a3..Yzi=" Origin: https://example.com

crossorigin=“anonymous”>

</script> g
Cross-Origin-Allow-Access: *

@PhilippeDeRyck

ON A POSITIVE NOTE, MANY CDNS MAKE SRI REALLY EASY

https://cdnjs.cloudflare.com/ajax/libs/angular.js/2.0.0-beta.17/anqular2.js m
Copy Url
https://cdnjs.cloudflare.com/ajax/libs/angular.js/2.0.0-beta.17/angular2.min.js Copy SR

Copy Script Tag

https://cdnjs.cloudflare.com/ajax/libs/angular.js/2.0.0-beta.17/http.dev.js
Copy Script Tag with SRI

< src="https://cdnjs.cloudflare.com/ajax/libs/angular.js/2.0.0-beta.17/angular2. js" integrity="

sha256-pQ+zWKiHP91ilLkd/wohYUH/XvvabBTRK19UjoIPFh5U=" crossorigin="anonymous''></

@PhilippeDeRyck

BUT DOING IT YOURSELF IS NOT VERY HARD

SRI Hash Generator

Enter the URL of the resource you wish to use:

<script src="https://cdnis.clovdflare.com/ajax/libs/angular.38/2.0.0-beta.l7/angular2.ja” 1
ntegrity="shal8i-VesknlTaxinTYBa24dBtE4BgPenS ZkdFxr4oFwSXITzkeCYXKrzpIAAQEVEDYEKO" crossori

gin="anonymous “></script>

@PhilippeDeRyck

WIDESPREAD BROWSER SUPPORT IS COMING

Subresource Integrity B s R e

Subresource Integrty enables browsers Lo verify that file s
tdelvered withowt unexpected manipulation

[y
» - . * C(Fhromefor UG Browser for Semsurg
€ [dge e et Chrore Safee 05 Safer! Opera Miey rocrod Ared O rerne:

http://caniuse.com/#search=sri

@PhilippeDeRyck

LEVERAGING BROWSING CONTEXTS FOR PRIVILEGE SEPARATION

= Different browsing contexts can have different privileges
— All contexts within the same origin will have the same privileges (permissions, data, ...)

" Privilege separation is possible, but requires some effort
— Works well for standalone components
— Difficult for cross-cutting libraries, such as JS frameworks, analytics code, ...

= Privilege separation in practice
— Loading a document from a different origin leverages the SOP
— Loading a document in a sandboxed frame creates a unique origin
— Communication can be enabled with the Web Messaging API

@PhilippeDeRyck

PRIVILEGE SEPARATION AT DROPBOX

function startSupportChat() {
SnapEngage . setWidgetId(SUPPORT_ID);
SnapEngage . setUsertEmail(chatData.Email, true)
SnapEngage. startChat("How can we help vou today?")

DropboxSnapEngage. startSupportChat = function() {
— this.chatRequested = true;
DropboxSnapEngage . showSnapEngagelframe();
return DropboxSnapEngage . sendMessage({
'message_type': 'startSupportChat’,
'chatData': this.chatData

i

 §-

DropboxSnapEngage. sendMessage = function(data) {
var content_window;
content_window = DropboxSnapEngage.getSnapEngagelframe().contentWindow;
return content_window.postMessage(data, this.SNAPENGAGE _IFRAME_ORIGIN);

g

@PhilippeDeRyck

HE GOAL OF CONTENT SECURITY PoLicy (CSP)

= CSP is intended as a defense-in-depth mechanism against injection attacks
— Gives developers a way to lock down their application in various ways
— Constrains an attacker in case of an injection vulnerability in the application
— CSP is not a replacement for traditional XSS mitigation techniques

= CSP places two kinds of restrictions on a page
— It disables “dangerous features” (e.g. inline scripts, inline styles and the use of eval)
— It only loads resources that are explicitly whitelisted, and blocks everything else

= CSP is an extensive security policy, with a wide variety of features
— We will focus on its capabilities to restrict XSS attacks first

@PhilippeDeRyck 49

CSP CAN ALSO RESTRICT OTHER TYPES OF CONTENT

= [njection attacks do not necessarily depend on JavaScript
— CSS injection can allow for the extraction of information
— HTML injection can modify the Ul, tricking the user into performing certain actions

= CSP has plenty of directives to constrain behavior in the context
— Directives to control included content (styles, images, fonts, frames, ...)
— Directives to control outgoing requests (XHR, form submissions, ...)
— Directives to define a sandbox on the current resource

= Additionally, other security features have been added to CSP as well

— The mechanism to upgrade insecure requests and to block mixed content
— A replacement mechanism for the X-FRAME-OPTIONS header

@PhilippeDeRyck 50

BROWSER SUPPORT — CONTENT SECURITY PoLIcy

Content Security Policy Level 2 & =

Mitigate cross-site scripting attacks by whitelisting alowed sources
of script. style, and other resources, CSP 2 adds hash-source,
nonce-sowrce, and five new directives
Curm J
» » » r r Cam
E Edge Featar Creome Satan OSSat - TOpuRM TR VORGSR

http://caniuse.com/#search=csp

@PhilippeDeRyck

SESSIONS, COOKIES AND TOKENS

@PhilippeDeRyck

COOKIE-BASED SESSION MANAGEMENT

°°°°° 2 GET http://www.example.com

200 OK &

—
<html>.</html>

GET http:// www.example.com /contacts.jsqa

200 OK
—

... contact info ..

& www.example.com

@PhilippeDeRyck

HE SECURITY PROPERTIES OF COOKIES

= Cookies are associated with a domain, not with an origin
— Cookies are shared over HTTP and HTTPS
— Cookies can be read and set by a header, and from JavaScript

= These properties are suboptimal, and cause a lot of problems
— Stealing cookies through eavesdropping
— Session hijacking / session fixation through JavaScript

= Cookie flags aim to patch cookie behavior to make it more secure
— The secure flag marks a cookie for use over HTTPS only
— The Httponly flag makes a cookie inaccessible from JavaScript

@PhilippeDeRyck

COOKIE PREFIXES MAKE IT EVEN MORE COMPLICATED

" The recently proposed cookie-prefix spec tries to restrict cookie behavior
— Cookie names can be prefixed with an attribute, enforcing strict behavior

" The __Secure- prefix restricts a cookie to secure connections only
— |t cannot be set over an insecure connection
— It cannot be set if the Secure flag is missing

" The __Host- prefix restricts a cookie to a specific host
— It will only be sent to a host, never to a domain
— It must be set for the root path (/) and with the Secure flag

" Enforcement depends on browser behavior
— Currently supported in all modern browsers (Chrome, Firefox, Opera, Edge, Safari)

@PhilippeDeRyck

55

HE UNDERESTIMATED THREAT OF CSRF

websec.be

login as Philippe 3
- & Welcome page
& Show messages 3
E - Latest messages

@ Post MesSaBs

philippe

Show obligatory cat pics

oo EveIRe s

Kittens from hell

R ALLULLLE S

anysite.io

@PhilippeDeRyck 56

HE ESSENCE OF CSRF

= CSRF exists because the browser handles cookies very liberally
— They are automatically attached to any outgoing request
— By default, there’s no mechanism to indicate the intent of a request

= Many applications are unaware that any context can send requests
— The session cookies will be attached automatically by the browser
— Defending against CSRF requires explicit action by the developer

= Because of its subtle nature, CSRF is a common vulnerability

— lllustrated by cases at Google, Facebook, eBay, ...
— Ranked #8 on OWASP top 10 (2013)

@PhilippeDeRyck 57

HIJACKING ACCOUNTS USING CSRF

CSRF Vulnerability in eBay Allows Hackers to
Hijack User Accounts — Video

Eduard Kovacs e Ffy

IT consultant and tech enthusiast Paul Moore has identified a few security
issues on eBay, including a cross-site request forgery (CSRF or XSRF)
vulnerability that can be exploited by hackers to compromise user accounts.

@PhilippeDeRyck 58

HIJACKING ACCOUNTS USING CSRF

@ Ebay.com

@ Change telephone number

Sure thing, Philippe

Confirm your identity to reset password

MU 3NS gFE YOU 3 lur R code Unce you !

Select the phone nember
Reset paSSWO rd < Cal ma a 2 new number nstead
OK, we will give you a call Update my offay protle wih the sumber

e

Reset password with secret code,

YWhan would you like e o call you 7
* Cab me now

P Call ma i two oenustes (halphal f you seed 10 dsconnect from the memet frst)
All done
€

@Phili ppeDe Hvyﬁs//news.softpedia. com/news/CSRF-Vulnerability-in-eBay-Allows-Hackers-to-Hijack-User-Accounts-Video-383316.shtml

AKING CONTROL OF YOUR HOME NETWORK WITH CSRF

@PhilippeDeRyck 60

AKING CONTROL OF YOUR HOME NETWORK WITH CSRF

2 192.168.1.1

Login with admin - admin

Invalid credentials
Login with admin - 1234

@ Welcome admin

@ Change DNS server

Sure thing, admin

@Phili ppeDe Hvyﬂs//news.softpedia. com/news/CSRF-Vulnerability-in-eBay-Allows-Hackers-to-Hijack-User-Accounts-Video-383316.shtml

AKING CONTROL OF YOUR HOME NETWORK WITH CSRF

PHARMING ATTACK TARGETS HOME ROUTER DNS SETTINGS

Michael MUnos0 W Fellow Quvbe mimose

Pharming attacks are generally network-based intrusions where the ultimate goal is to
redirect a viKtim's webd traffic to a hacker-controlied webserver, generally through a

malicious modification of DNS settings.

Some of these attacks, haowever, are starting 10 mowve to the web and have their

beginmangs with a spam or phishang emall

Hackers hijack 300,000-plus wireless
routers, make malicious changes

v D-Link. Micronet } ang i ¥ 0K n;";l"):')

Sy Dan Coodin - Mar 3 2014 880am CET m

CSRF SOHO ROUTER ATTACK

1 2 3
. P - ot ThE o m e et w e 8 e e o Yo e et) -
-t . e ca TRL b ot e - . et T WA e Tee e
) e L=y 4 - — - e v Ve Lt m—
B R e

Ressarchers sand they bave uncovered yet another mass compromese of home and small-ofce
s eless routers, ths one beng usad 1o make Makcous configuraton changes 1o more than 300,000
devices made by D-Uink, Microret, Tenda, TP-Link, and others

http://arstechnica.com/security/2014/03/hackers-hijack-300000-plus-wireless-routers-make-malicious-changes/
https://threatpost.com/pharming-attack-targets-home-router-dns-settings/111326

@PhilippeDeRyck

62

CSRF DEFENSE 1: HIDDEN FORM TOKENS

websec.be

login as Philippe 3
E ¢ & Welcome page
@& Post message @ 3
E € Sure thing, Philippe

X meSSage
r\gef\-

@ POS
Strange! L3

Show obligatorx cat Eics 3
¢ Kittens from hell

anysite.io

<input type=“hidden” name=“csrftoken” wvalue”1234abc” />

@PhilippeDeRyck 63

CSRF DEFENSE 2: TRANSPARENT TOKENS

websec.be

login as Philippe 3
E & E & & Welcome, Philippe
> @& Post message @ >

E - Sure thing, Philippe

essage
@Post™ \
% Strange’ Dangel.

BB

Show obligatory cat pics

— owoeTveRE

Kittens from hell

&

anysite.io

POST ..
@ ® cookie: SID=123, XSRF-TOKEN=abc
@ Xx-XSRF-TOKEN: abc

Cookie value is copied to a
header by JavaScript code

@PhilippeDeRyck

CSRF DEFENSE 2BIS: TRANSPARENT TOKENS

websec.be

login as Philippe 3
E & E & & Welcome, Philippe
> @& Post message @ >

E - Sure thing, Philippe

essage
@Post™ \
% Strange’ Dangel.

BB

Show obligatory cat pics

— owoeTveRE

Kittens from hell

&

anysite.io

POST ..
@ ® cookie: SID=123, XSRF-TOKEN=abc
. ..&xsrftoken=abc

Cookie value is copied to a
hidden form field by JS

@PhilippeDeRyck

CSRF DEFENSE 3: CHECKING THE ORIGIN HEADER

websec.be

& Post message

ﬁ
E Origin: https://websec.be

E : Sure thing, Philippe

Show obligatorx cat Eics 3
¢ Kittens from hell

anysite.io

@PhilippeDeRyck 66

RELIABILITY ISSUES WITH THE ORIGIN HEADER

= Browsers are a quirky when sending the origin header
— It should be sent on every cross-origin request sent through XMLHttpRequest
— It should be sent on every cross-origin request, except for GET and HEAD requests

" The first requirement is part of CORS (Cross-Origin Resource Sharing)
— Since the origin header is fundamental here, it is well supported in all browsers
— The second requirement is less crucial, and therefore support is quirky

= This makes the origin header less suited as a CSRF defense
— Except when all your calls are to an APl in another origin
— At that point, you have CORS requests, and you can easily check the origin header

@PhilippeDeRyck https://bugzilla.mozilla.org/show_bug.cqgi?id=446344

CSRF DEFENSE 4: SAMESITE COOKIES

websec.be

login as Philippe 3
E G ¢ & Welcome page
| @& Post message 5
E € Sure thing, Philippe

post Messats \
strange! Dange=

Show obligatorx cat pics 3
¢ Kittens from hell

anysite.io

Set-Cookie: SSID=1234; SameSite=Strict

@PhilippeDeRyck https://tools.ietf.org/html/draft-west-first-party-cookies-07

BROWSER SUPPORT FOR SAMESITE COOKIES

'SameSite’ cookie attribute »

Same-site cookies ("Hirst-Party-Only” or "FHrst-Party”) alow servers
10 mitigate the risk of CSRF and information leakage attacks by
asserting that a particular cockoe should anly be sent with requests
initiated from the same registrable domain

E : 5 . . Ohvomefor UCSBrowserfor Samsung
E cope Frefox Chrome Safari 05 Safan Cpera M Androsd Aol s,

@PhilippeDeRyck

OVERVIEW OF CSRF DEFENSES

* Hidden form tokens
— Requires server-side storage of CSRF tokens, which may be resource-intensive

= Transparent tokens
— Stateless CSRF defense mechanism
— Extremely compatible with client-side JavaScript applications (e.g. AngularlS)

" Checking the origin header
— Useful when other context information is missing
— Plays an important role when accessing APIs with Cross-Origin Resource Sharing (CORS)
— Practical defense during the setup of a WebSocket connection

= SameSite cookies
— Addresses the root of the problem, but browser support is still very limited

@PhilippeDeRyck 70

ANGULAR SUPPORTS TRANSPARENT TOKENS BY DEFAULT

Cross Site Request Forgery (XSRF) Protection l

XSRE S an attack t“hnmo W thh the attarkar ran trirk namn s dthantirstoadd isenre Infn L nbnmuinahe averss firna articne An ueu e cunheibn

Anguiar)S provides a mechanism to coun
default, XSRF-TOKEN Jand setsitasan N
COOlGa, your server can be assured that th
doman requests,

To take advantage of this, your server nee
GET request. On subsequent XHR reques
sure that only JavaScript running on your:
verifiable by the server (to prevent the Jav
authentication cookie with a salt for adde

The name of the headers can be specified
config-time, $hittp defaults at run-time, or

In order 10 préavent CollSions in environmsa
each apphcation uses uniqQue cookie nam
—

Angular's http has built+n support for the client-side half of this technique in its XSRFStrategy . The default
Cooki1eXSRFStrategy 1S tumed on automatically. Before sending an HTTP request, the CookieXSRFStrategy looks for a
cookie called XSRF-TOKEN and sets a header named X-XSRF-TOKEN with the value of that cookie

The server must do i1s part by setting the initial XSRF-TOKEN cookie and confirming that each subsequent state-modifying

request includes a matching XSRF-TOKEN cookie and X-XSRF-TOKEN header

XSRF/CSRF tokens should be unique per user and session, have a large random value generated by a cryptographically secure
random number generator, and expire in a day or two

Your server may use a different cookie or header name 1or this purpose. An Angular application can customize cookie and

header names by providing its own CookieXSRFStrategy values

{ provide: XSRFStrategy, useValue: new CookieXSRFStrategy('myCookieName®, *My-Meader-Nome') }

Or you can implement and provide an entirely custom XSRFStrategy

{ provide: XSREStrategy, useCloss: MyXSRFStrategy)

@PhilippeDeRyck

CSRF DEFENSE 2: TRANSPARENT TOKENS

websec.be

login as Philippe 3
E & E & & Welcome, Philippe
> @& Post message @ >

E - Sure thing, Philippe

essage
@Post™ \
% Strange’ Dangel.

BB

Show obligatory cat pics

— owoeTveRE

Kittens from hell

&

anysite.io

POST ..
@ ® cookie: SID=123, XSRF-TOKEN=abc
@ Xx-XSRF-TOKEN: abc

Cookie value is copied to a
header by JavaScript code

@PhilippeDeRyck

DEFENDING AGAINST CSRF IN ANGULAR

" Protect your application by deploying an appropriate CSRF defense
— Angular supports transparent tokens out of the box
— If the APl is accessed over CORS, the origin header is a viable alternative

= Make sure your backend is fully aware of the potential impact of CSRF
— Enable CSRF checks for all entry points, except authentication
— Avoid performing state-changing effects with GET requests (e.g. logout)
— Be aware of frameworks that collate GET and POST requests

" Use the samesite cookie attribute for additional security
— Will only work if your application and backend run within the same domain

@PhilippeDeRyck 73

JSON Web Tokens are an open, industry standard RFC 7519 method for
representing claims securely between two parties.

http://jwt.io/

MEALDER
eyJhBGCi01JIUZITNLISINRSCCIG I kpXVCIsImt
PZCIGITUWNICIYMQZLTRIZMMENDEYZCTIEINTIOLN

EINTASNIMIZTUBZ1J)9 . ¢ CIMIOLJLIWN

PREYLOAL

VENFY S30NATUL

75
@PhilippeDeRyck

JW'T REPRESENTS DATA, NOT THE TRANSPORT MECHANISM

=" The cookies vs tokens debate can be a bit confusing
— Cookies are a transport mechanism, just like the Authorization header
— Tokens are a representation of (session) data, like a (session) identifier

= JWT tokens can be transmitted in a cookie, or in the 2uthorization header
— Defining how to transmit a JWT token is up to the web application
— This choice determines the need for JavaScript support and CSRF defenses

= Modern applications typically use JWT in the Authorization header
— Frontend JavaScript apps can easily put the token into the Authorization header
— JWT tokens are easy to pass around between services in the backend as well

@PhilippeDeRyck 76

PUTTING IT ALL TOGETHER

@PhilippeDeRyck

SIMPLE CORS EXAMPLE WITH CREDENTIALS

var xhr = new XMLHttpRequest();

xhr.open('GET', 'http://www.websec.be/profile', false);
xhr.withCredentials = true;

xhr.send();

&

www.example.com
Load page

m— >
E |
< <

XHR: load user’s profile from websec.be
Origin: http://www.example.com
Cookie: PHPSESSID=la2b3c4d5e6f

>
< o)
Access-Control-Allow-Origin:

http://www.example.com www.websec.be
Access-Control-Allow-Credentials: true

@PhilippeDeRyck 78

VWEBSOCKETS DEPEND ON THE ORIGIN HEADER

[OSSA 2015-005] Websocket Hijacking Vulnerability in Nova |
VNC Server (CVE-2015-0259)

Bug #1409142 reported by a Josh Kleinpeter on 2015-01-09

This gives the attacker full read-write access to the VNC console of any

instance recently accessed by the victim.

https://bugs.launchpad.net/nova/+bug/1409142

@PhilippeDeRyck

KEEPING SECRETS IN THE BROWSER

Main site “ Private origin

Web
Messaging
Main site Iframe with a separate origin
Asks the private origin to make certain Only the code to keep the API key and
requests, without having to know the API key. perform API calls runs here

@PhilippeDeRyck

DOCUMENT RENDERING IN CHROMEQS

Sandboxed JS
Main site “ execution
Web environment
Messaging
Main site Sandboxed iframe
Protected with CSP to prevent injection Runs in unique origin
Delegates insecure executions to the sandboxed iframe Allowed to run JS

https://speakerdeck.com/mikewest/securing-the-client-side-devoxx-2012

@PhilippeDeRyck 81

Now IT’S UP TO YOU ...

Secure Follow Share

@PhilippeDeRyck philippe@secappdev.org /in/philippederyck

